centrifugal pump solved examples|centrifugal pumps handbook pdf : traders Dimensionless performance curves for a typical centrifugal pump from data given in Fig. 14.9 Fig. (14.10) As one of the leading shale shaker suppliers in China, we warmly welcome you to buy durable .
{plog:ftitle_list}
The VSM 300 Shale Shaker is designed to meet the demands of the oilfield drilling industry and is purpose built to provide a more efficient primary solids removal system. The VSM 300 Shale Shaker is designed on a modular basis thus enabling multi unit installations and flexible configurations to be achieved using standard equipment.
Centrifugal pumps are widely used in various industries for fluid transportation and are known for their efficiency and reliability. In this article, we will explore a centrifugal pump example to understand how these pumps work and how to calculate important parameters.
The document contains 5 solved problems related to centrifugal pumps. The problems cover topics like calculating head, power required, efficiency,
Example:
A centrifugal pump has an outlet diameter equal to two times the inner diameter and is running at 1200 rpm. The pump works against a total head of 75 m. We need to calculate the velocity of flow through the impeller.
Solution:
To calculate the velocity of flow through the impeller, we can use the formula:
\[ V = \frac{Q}{A} \]
Where:
- \( V \) = Velocity of flow (m/s)
- \( Q \) = Flow rate (m\(^3\)/s)
- \( A \) = Area of the impeller (m\(^2\))
First, we need to calculate the flow rate using the formula:
\[ Q = \frac{\pi \times D^2 \times N}{4 \times 60} \]
Where:
- \( D \) = Diameter of the impeller (m)
- \( N \) = Pump speed (rpm)
Given that the outlet diameter is two times the inner diameter, we can calculate the diameter of the impeller:
Inner diameter, \( D_i = D \)
Outlet diameter, \( D_o = 2D \)
Area of the impeller, \( A = \frac{\pi}{4} \times (D_o^2 - D_i^2) \)
Substitute the values and calculate the flow rate:
\[ Q = \frac{\pi \times (2D)^2 \times 1200}{4 \times 60} \]
Next, we calculate the area of the impeller:
\[ A = \frac{\pi}{4} \times ((2D)^2 - D^2) \]
Now, we can calculate the velocity of flow using the formula mentioned earlier.
Dimensionless performance curves for a typical centrifugal pump from data given in Fig. 14.9 Fig. (14.10)
Shop iSpring's WSP50ARJ Spin-Down Sediment Water Filter. Designed for a more complicated well water situation. Large Capacity. Free Shipping. Buy Now! . [Four Different Microns for Replacement Filters] Four microns filter sizes are available for the WSPSL-ARJ/WSPSL-ARJ-BP series. . iSpring RCC7 High Capacity Under Sink 5-Stage Reverse .
centrifugal pump solved examples|centrifugal pumps handbook pdf